Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 686
Filtrar
1.
Int J Hyg Environ Health ; 257: 114341, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38442666

RESUMO

Water, Sanitation, and Hygiene (WaSH) interventions are the most effective in reducing diarrheal disease severity and prevalence. However, very few studies have investigated the effectiveness of WaSH intervention in reducing pathogen presence and concentration. In this study, we employed a microfluidic PCR approach to quantify twenty bacterial pathogens in water (n = 360), hands (n = 180), and fomite (n = 540) samples collected in rural households of Nepal to assess the pathogen exposures and the effect of WaSH intervention on contamination and exposure rates. The pathogen load and the exposure pathways for each pathogen in intervention and control villages were compared to understand the effects of WaSH intervention. Pathogens were detected in higher frequency and concentration from fomites samples, toilet handle (21.42%; 5.4,0 95%CI: mean log10 of 4.69, 5.96), utensils (23.5%; 5.47, 95%CI: mean log10 of 4.77, 6.77), and water vessels (22.42%; 5.53, 95%CI: mean log10 of 4.79, 6.60) as compared to cleaning water (14.36%; 5.05, 95%CI: mean log10 of 4.36, 5.89), drinking water (14.26%; 4.37, 85%CI: mean log10 of 4.37, 5.87), and hand rinse samples (16.92%; 5.49, 95%CI: mean log10 of 4.77, 6.39). There was no clear evidence that WaSH intervention reduced overall pathogen contamination in any tested pathway. However, we observed a significant reduction (p < 0.05) in the prevalence, but not concentration, of some target pathogens, including Enterococcus spp. in the intervention village compared to the control village for water and hands rinse samples. Conversely, no significant reduction in target pathogen concentration was observed for water and hand rinse samples. In swab samples, there was a reduction mostly in pathogen concentration rather than pathogen prevalence, highlighting that a reduction in pathogen prevalence was not always accompanied by a reduction in pathogen concentration. This study provides an understanding of WaSH intervention on microbe concentrations. Such data could help with better planning of intervention activities in the future.


Assuntos
Água Potável , Saneamento , Fômites , Água , Nepal/epidemiologia , Higiene
2.
Food Environ Virol ; 16(1): 65-78, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38372960

RESUMO

Restroom use has been implicated in a number of viral outbreaks. In this study, we apply quantitative microbial risk assessment to quantify the risk of viral transmission by contaminated restroom fomites. We estimate risk from high-touch fomite surfaces (entrance/exit door, toilet seat) for three viruses of interest (SARS-CoV-2, adenovirus, norovirus) through eight exposure scenarios involving differing user behaviors, and the use of hand sanitizer following each scenario. We assessed the impacts of several sequences of fomite contacts in the restroom, reflecting the variability of human behavior, on infection risks for these viruses. Touching of the toilet seat was assumed to model adjustment of the seat (open vs. closed), a common touch point in single-user restrooms (home, small business, hospital). A Monte Carlo simulation was conducted for each exposure scenario (10,000 simulations each). Norovirus resulted in the highest probability of infection for all exposure scenarios with fomite surfaces. Post-restroom automatic-dispensing hand sanitizer use reduced the probability of infection for each virus by up to 99.75%. Handwashing within the restroom, an important risk-reduction intervention, was not found to be as effective as use of a non-touch hand sanitizer dispenser for reducing risk to near or below 1/1,000,000, a commonly used risk threshold for comparison.


Assuntos
Higienizadores de Mão , Norovirus , Vírus , Humanos , Toaletes , Fômites , Norovirus/genética , Medição de Risco
3.
Avian Dis ; 67(4): 305-309, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38300651

RESUMO

Avian influenza (AI) is a highly contagious disease that can be transmitted to naïve birds through fomites. The survival of AI viruses (AIV) on nonporous and porous fomites also dictates how long the fomite can serve as a vehicle for virus transmission. AIVs are known to be inactivated by ozone and ultraviolet (UV) light. However, the combined effect of UV light and ozone in combating AIV on different fomites has not been investigated. This study was undertaken to determine AIV inactivation by a commercial device called the BioSec shoe sanitizing station. This device generates both ozone and UV light for 8 sec when activated. We evaluated this device against three different subtypes of AIVs applied on seven different fomites. In general, the device inactivated all three AIV subtypes loaded on all fomites but to varying degrees of inactivation. The percentage of virus reduction on nonporous fomites (98.6%-99.9%) was higher than on porous fomites (90.0%-99.5%). In conclusion, this new device has the potential to help reduce the risk of transmission of AIV.


Inactivación de cuatro subtipos del virus de la influenza A mediante un dispositivo comercial usando luz ultravioleta y ozono. La influenza aviar (IA) es una enfermedad altamente contagiosa que puede transmitirse a aves susceptibles a través de fómites. La supervivencia de los virus de la influenza aviar en fómites porosos y no porosos también determina cuánto tiempo el fómite puede servir como vehículo para la transmisión del virus. Se sabe que los virus de influenza aviar son inactivados por el ozono y la luz ultravioleta (UV). Sin embargo, no se ha investigado el efecto combinado de la luz ultravioleta y el ozono para inactivar el virus de la influenza aviar en diferentes fómites. Este estudio se llevó a cabo para determinar la inactivación del virus de la influenza aviar mediante un dispositivo comercial llamado estación de desinfección de calzado BioSec. Este dispositivo genera ozono y luz ultravioleta durante 8 segundos cuando se activa. Se evaluó este dispositivo frente a cuatro subtipos diferentes del virus influenza aviar aplicados en siete fómites diferentes. En general, el dispositivo inactivó los cuatro subtipos de influenza aviar inoculados en todos los fómites, pero con distintos grados de inactivación. El porcentaje de reducción de virus en fómites no porosos (98.6%­99.9%) fue mayor que en fómites porosos (90.0%­99.5%). En conclusión, este nuevo dispositivo tiene el potencial de ayudar a reducir el riesgo de transmisión del virus de la influenza aviar.


Assuntos
Vírus da Influenza A , Ozônio , Doenças das Aves Domésticas , Animais , Raios Ultravioleta , Fômites
4.
Appl Environ Microbiol ; 90(2): e0189223, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38289132

RESUMO

The growing concern arising from viruses with pandemic potential and multi-resistant bacteria responsible for hospital-acquired infections and outbreaks of food poisoning has led to an increased awareness of indirect contact transmission. This has resulted in a renewed interest to confer antimicrobial properties to commonly used metallic materials. The present work provides a full characterization of optimized fluoride anodic films grown in stainless steel 304L as well as their antimicrobial properties. Antibacterial tests show that the anodic film, composed mainly of chromium and iron fluorides, reduces the count and the percentage of the area covered by 50% and 87.7% for Pseudomonas aeruginosa and Stenotrophomonas maltophilia, respectively. Virologic tests show that the same treatment reduces the infectivity of the coronavirus HCoV-229E-GFP, in comparison with the non-anodized stainless steel 304L.IMPORTANCEThe importance of environmental surfaces as a source of infection is a topic of particular interest today, as many microorganisms can survive on these surfaces and infect humans through direct contact. Modification of these surfaces by anodizing has been shown to be useful for some alloys of medical interest. This work evaluates the effect of anodizing on stainless steel, a metal widely used in a variety of applications. According to the study, the fluoride anodic layers reduce the colonization of the surfaces by both bacteria and viruses, thus reducing the risk of acquiring infections from these sources.


Assuntos
Anti-Infecciosos , Fluoretos , Humanos , Fluoretos/farmacologia , Aço Inoxidável , Fômites , Bactérias , Anti-Infecciosos/farmacologia
5.
J Med Virol ; 95(12): e29296, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38054540

RESUMO

Mpox is still spreading globally and is mostly reported to be transmitted by skin and mucosal contact. However, transmission through contact with fomites, contaminated objects, or surfaces has been reported in general population. Evaluation of the stability of mpox virus (MPXV) on different surfaces is important to minimize mpox transmission. In the study, the stability of MPXV on different kinds of commonly contacted surfaces was determined. MPXV was observed to have a surface-dependent stability pattern. Viable virus was detected on both glass and stainless steel for up to 5 days, and on plastic surfaces for up to 3 days. In contrast, no viable MPXV was detected on wooden board and cardboard, which are porous and water-absorbent surfaces, after 1 and 2 days of incubation, respectively. In addition, MPXV nucleic acids were more stable and showed better correlation with viral titers on stainless steel, plastic, and glass. The results indicate that fomite transmission of MPXV is plausible. Moreover, the stability of MPXV was highly surface-dependent and more stable on smooth surfaces, which could provide more information for minimizing the transmission of mpox and emphasize the significance of environmental disinfection in mpox prevention and control.


Assuntos
Humanos , Vírus da Varíola dos Macacos , Aço Inoxidável , Desinfecção , Fômites
6.
J Med Virol ; 95(12): e29312, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38100621

RESUMO

For the prevention of infectious diseases, knowledge about potential transmission routes is essential. Pathogens can be transmitted directly (i.e. respiratory droplets, hand-to-hand contact) or indirectly via contaminated surfaces (fomites). In particular, frequently touched objects/surfaces may serve as transmission vehicles for different clinically relevant bacterial, fungal, and viral pathogens. Banknotes and coins offer ample surface area and are frequently exchanged between individuals. Consequently, many concerns have been raised in the recent past, that banknotes and coins could serve as vectors for the transmission of disease-causing microorganisms. This review summarizes the latest research on the potential of paper currency and coins to serve as sources of pathogenic viral, bacterial, and fungal agents. In contrast to the current perception of banknotes and coins as important transmission vehicles, current evidence suggests, that banknotes and coins do not pose a particular risk of pathogen infection for the public.


Assuntos
Fômites , Numismática , Humanos , Bactérias/genética
7.
PeerJ ; 11: e16420, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38025703

RESUMO

During the recent pandemic of COVID-19 (SARS-CoV-2), influential public health agencies such as the World Health Organization (WHO) and the U.S. Centers for Disease Control and Prevention (CDC) have favored the view that SARS CoV-2 spreads predominantly via droplets. Many experts in aerobiology have openly opposed that stance, forcing a vigorous debate on the topic. In this review, we discuss the various proposed modes of viral transmission, stressing the interdependencies between droplet, aerosol, and fomite spread. Relative humidity and temperature prevailing determine the rates at which respiratory aerosols and droplets emitted from an expiratory event (sneezing, coughing, etc.) evaporate to form smaller droplets or aerosols, or experience hygroscopic growth. Gravitational settling of droplets may result in contamination of environmental surfaces (fomites). Depending upon human, animal and mechanical activities in the occupied space indoors, viruses deposited on environmental surfaces may be re-aerosolized (re-suspended) to contribute to aerosols, and can be conveyed on aerial particulate matter such as dust and allergens. The transmission of respiratory viruses may then best be viewed as resulting from dynamic virus spread from infected individuals to susceptible individuals by various physical states of active respiratory emissions, instead of the current paradigm that emphasizes separate dissemination by respiratory droplets, aerosols or by contaminated fomites. To achieve the optimum outcome in terms of risk mitigation and infection prevention and control (IPAC) during seasonal infection peaks, outbreaks, and pandemics, this holistic view emphasizes the importance of dealing with all interdependent transmission modalities, rather than focusing on one modality.


Assuntos
COVID-19 , Aerossóis e Gotículas Respiratórios , Estados Unidos , Humanos , COVID-19/epidemiologia , SARS-CoV-2 , Fômites , Poeira
8.
Emerg Microbes Infect ; 12(2): 2239941, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37483123

RESUMO

Indirect transmission of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has been investigated but it is still not completely understood. The present study aimed to compare the persistence and viability of the lineage B.1 and omicron BA.1 subvariant in five daily-use materials to evaluate the role of fomites as a possible source of infection. Artificial contamination was performed in the first set of materials, ethylene vinyl acetate (EVA), cardboard, polystyrene, aluminium, and plastic. Further surfaces using BA.1 (glass, plexiglass, cotton, polyester, and tetrapak) were conducted. The persistence, viability of Vero E6 cell cultures and the residual infectivity of the two lineages were evaluated over 5 days. The results showed different stabilities between the tested matrices. In cotton and polyester, the RNA was undetectable in 24 and 48h post-contamination (p.c.), respectively, and the virus was not viable within 30 min, while in the other surfaces, both lineages, RNA was detectable until 120h p.c. A rapid decay of the viral load was revealed on cardboard, mostly for the omicron variant. Furthermore, on all the materials, longer stability of BA.1 was demonstrated, but showing a less intense CPE than the wild-type. EVA was the material that was able to better sustain virus stability as the virus developed CPE up to 72h p.c. In conclusion, the potential spread of SARS-CoV-2 through fomites is conceivable, albeit it is difficult to establish the real capacity to infect people. Nevertheless, thise information is fundamental to adopting the appropriate measures to mitigate the spread of SARS-CoV-2 and its variants.


Assuntos
COVID-19 , Fômites , Humanos , SARS-CoV-2 , Poliésteres , RNA
9.
Pathog Glob Health ; 117(8): 681-695, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37350182

RESUMO

The Coronavirus disease 19 (COVID-19) pandemics, caused by severe acute respiratory syndrome coronaviruses, SARS-CoV-2, represent an unprecedented public health challenge. Beside person-to-person contagion via airborne droplets and aerosol, which is the main SARS-CoV-2's route of transmission, alternative modes, including transmission via fomites, food and food packaging, have been investigated for their potential impact on SARS-CoV-2 diffusion. In this context, several studies have demonstrated the persistence of SARS-CoV-2 RNA and, in some cases, of infectious particles on exposed fomites, food and water samples, confirming their possible role as sources of contamination and transmission. Indeed, fomite-to-human transmission has been demonstrated in a few cases where person-to-person transmission had been excluded. In addition, recent studies supported the possibility of acquiring COVID-19 through the fecal-oro route; the occurrence of COVID-19 gastrointestinal infections, in the absence of respiratory symptoms, also opens the intriguing possibility that these cases could be directly related to the ingestion of contaminated food and water. Overall, most of the studies considered these alternative routes of transmission of low epidemiological relevance; however, it should be considered that they could play an important role, or even be prevalent, in settings characterized by different environmental and socio-economic conditions. In this review, we discuss the most recent findings regarding SARS-CoV-2 alternative transmission routes, with the aim to disclose what is known about their impact on COVID-19 spread and to stimulate research in this field, which could potentially have a great impact, especially in low-resource contexts.


Assuntos
COVID-19 , Humanos , SARS-CoV-2 , RNA Viral , Fômites , Água
10.
Health Secur ; 21(4): 303-309, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37289796

RESUMO

The pursuit of disinfecting porous materials or fomites to inactivate viral agents has special challenges. To address these challenges, a highly portable chlorine dioxide (ClO2) gas generation system was used to ascertain the ability of a gaseous preparation to inactivate a viral agent, the MS2 bacteriophage, when associated with potentially porous fomites of cloth, paper towel, and wood. The MS2 bacteriophage is increasingly used as a model to identify means of inactivating infectious viral agents of significance to humans. Studies showed that MS2 bacteriophage can be applied to and subsequently recovered from potential porous fomites such as cloth, paper towel, and wood. Paired with viral plaque assays, this provided a means for assessing the ability of gaseous ClO2 to inactivate bacteriophage associated with the porous materials. Notable results include 100% inactivation of 6 log bacteriophage after overnight exposure to 20 parts per million(ppm) ClO2. Reducing exposure time to 90 minutes and gas ppm to lower concentrations proved to remain effective in bacteriophage elimination in association with porous materials. Stepwise reduction in gas concentration from 76 ppm to 5 ppm consistently resulted in greater than 99.99% to 100% reduction of recoverable bacteriophage. This model suggests the potential of ClO2 gas deployment systems for use in the inactivation of viral agents associated with porous potential fomites. The ClO2 gas could prove especially helpful in disinfecting enclosed areas containing viral contaminated surfaces, rather than manually spraying and wiping them.


Assuntos
Bacteriófagos , Compostos Clorados , Desinfetantes , Humanos , Desinfecção , Cloro , Desinfetantes/farmacologia , Fômites , Porosidade , Óxidos/farmacologia , Compostos Clorados/farmacologia
11.
J Appl Behav Anal ; 56(3): 549-564, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37179496

RESUMO

Fomite-mediated self-infection via face touching is an understudied transmission pathway for infectious diseases. We evaluated the effect of computer-mediated vibrotactile cues (presented through experimental bracelets located on one or both hands of the participant) on the frequency of face touching among eight healthy adults in the community. We conducted a treatment evaluation totaling over 25,000 min of video observation. The treatment was evaluated through a multiple-treatment design and hierarchical linear modeling. The one-bracelet intervention did not produce significantly lower levels of face touching across both hands, whereas the two-bracelet intervention did result in significantly lower face touching. The effect increased over repeated presentations of the two-bracelet intervention, with the second implementation producing, on average, 31 fewer face-touching percentual points relative to baseline levels. Dependent on the dynamics of fomite-mediated self-infection via face touching, treatment effects could be of public health significance. The implications for research and practice are discussed.


Assuntos
Fômites , Tecnologia Háptica , Adulto , Humanos , Retroalimentação , Tato , Saúde Pública
12.
Appl Microbiol Biotechnol ; 107(12): 3887-3897, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37199751

RESUMO

Nosocomial infections or healthcare-associated infections (HAIs) are acquired under medical care in healthcare facilities. In hospital environments, the transmission of infectious diseases through textiles such as white coats, bed linen, curtains, and towels are well documented. Textile hygiene and infection control measures have become more important in recent years due to the growing concerns about textiles as fomites in healthcare settings. However, systematic research in this area is lacking; the factors contributing to the transmission of infections through textiles needs to be better understood. The review aims to critically explore textiles as contaminants in healthcare systems, and to identify potential risks they may pose to patients and healthcare workers. It delineates different factors affecting bacterial adherence on fabrics, such as surface properties of bacteria and fabrics, and environmental factors. It also identifies areas that require further research to reduce the risk of HAIs and improve textile hygiene practices. Finally, the review elaborates on the strategies currently employed, and those that can be employed to limit the spread of nosocomial infections through fabrics. Implementing textile hygiene practices effectively in healthcare facilities requires a thorough analysis of factors affecting fabric-microbiome interactions, followed by designing newer fabrics that discourage pathogen load. KEY POINTS: • Healthcare textiles act as a potential reservoir of nosocomial pathogens • Survival of pathogens is affected by surface properties of fabric and bacteria • Guidelines required for fabrics that discourage microbial load, for hospital use.


Assuntos
Infecção Hospitalar , Fômites , Humanos , Têxteis/microbiologia , Infecção Hospitalar/prevenção & controle , Infecção Hospitalar/microbiologia , Bactérias , Atenção à Saúde
14.
Food Environ Virol ; 15(2): 107-115, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37067719

RESUMO

This study aimed to investigate the effect of different environmental disinfection methods on reducing contaminated surfaces (CSs) by the Omicron BA.2.2 variant of SARS-CoV-2 in the fever clinic between March 20 and May 30, 2022, and to analyze the influences and related factors of CSs. This study includes survey data from 389 positive patients (SPPs) and 204 CSs in the fever clinic, including the CS type, disinfection method, length of time spent in the clinic, cycle threshold (CT) value, name, age, weight, mask type, mask-wearing compliance, hand-mouth touch frequency and sex. Associations between study variables and specified outcomes were explored using univariate regression analyses. Mask-wearing compliance had a significant negative correlation with CSs (r = - 0.446, P = 0.037). Among the 389 SPPs, 22 SPPs (CRP, 5.66%) caused CSs in the separate isolation room. A total of 219 SPPs (56.30%) were male. The mean age of SPPs was 4.34 ± 3.92 years old, and the mean CT value was 12.44 ± 5.11. In total, 9952 samples with exposure history were taken, including 204 (2.05%) CSs. Among the CSs, the positive rate of flat surfaces was the highest in public areas (2.52%) and separate isolation rooms (4.75%). Disinfection methods of ultraviolet radiation + chemical irradiation significantly reduced the CSs in both the public area (0% vs. 4.56%) and the separate isolation room (0.76% vs. 2.64%) compared with the chemical method alone (P < 0.05). Compared with ordinary SPPs, CRPs were older (6.04 year vs. 4.23 year), and the male proportion was higher (72.73% vs. 55.31%). In particular, it was found that SPPs contaminated their surroundings and therefore imposed risks on other people. Environmental disinfection with ultraviolet radiation + chemical treatment should be emphasized. The findings may be useful to guide infection control practices for the Omicron BA.2.2 variant of SARS-CoV-2.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Masculino , Lactente , Pré-Escolar , Criança , Feminino , Desinfecção , Fômites , Raios Ultravioleta , China
15.
Artigo em Espanhol | IBECS | ID: ibc-218765

RESUMO

Objetivo: Estudiar la presencia de SARS-CoV-2 en superficies (alto, medio y bajo contacto) y aires de espacios no sanitarios pero de elevada afluencia de público para evaluar el riesgo de contagio ambiental. Método: Se ha realizado el análisis de las superficies y de los aires por RT-qPCR para detectar la presencia de SARS-CoV-2. Resultados: Se obtuvieron 394 superficies y 23 muestras de aire de espacios de alta afluencia de personas, como oficinas, centros comerciales y residencias de ancianos. El virus no fue detectado en ninguna de las muestras analizadas. Conclusión: Aunque no podemos concluir rotundamente que no existe un riesgo de infección ambiental por SARS-CoV-2 en espacios no sanitarios, sí podemos afirmar que el riesgo es casi nulo.(AU)


Objective: To study the presence of SARS-CoV-2 on surfaces (high, medium and low contacts) and airs in non-sanitary spaces with high public influx to evaluate the risk of environmental contagion. Method: Surfaces and airs were analysed by RT-qPCR to detect the presence of SARS-CoV-2. Results: A total of 394 surfaces and air samples were obtained from spaces with high public influx such as offices, shopping centres and nursing homes. The virus was not detected in any of the samples analysed. Conclusion: Although we cannot emphatically conclude that there is no risk of environmental infection by SARS-CoV-2 in non-sanitary spaces, we can affirm that the risk is almost non- existent.(AU)


Assuntos
Humanos , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave , Pandemias , Infecções por Coronavirus/epidemiologia , Fômites , Transmissão de Doença Infecciosa , Incrustação Biológica , Doença Ambiental , Microbiologia , Técnicas Microbiológicas
16.
J Infect Public Health ; 16(5): 736-740, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36958168

RESUMO

INTRODUCTION: Although the potential role of inanimate surfaces in SARS-CoV-2 transmission has yet to be adequately assessed, it is still routine practice to apply deep and expensive environmental disinfection protocols. The aim of this study was to verify the presence of viable virus on different surfaces exposed to droplets released by coughing in SARS-CoV-2 RNA positive patients. METHODS: Patients admitted to hospital with a positive SARS-CoV-2 real-time (RT)-PCR swab were asked to cough on steel, cardboard, plastic and their hands. Surfaces were tested at baseline (T0) and at different timepoints thereafter using swabs dipped in medium, and quickly seeded on VERO E6 cells that were checked every other day for cytopathic effect (CPE). Laboratory-propagated SARS-CoV-2 strains were examined at the same time points and on identical materials. RESULTS: Ten RNA-positive patients were enrolled into the study. The median cycle threshold value was 20.7 (range 13-28.3). Nasopharyngeal swabs from 3 of the patients yielded viable virus 2-10 days post-inoculation. However, in none of the patients was it possible to isolate viable SARS-CoV-2 from sputum under identical experimental conditions. A CPE was instead already visible using laboratory-propagated SARS-CoV-2 strains at 20', 60', 180' while an effect at 24 h required a 6-day incubation. CONCLUSION: The evidence emerging from this real-life study suggests that droplets delivered by SARS-CoV-2 infected patients on common inanimate surfaces did not contain viable virus. In contrast, and in line with several laboratory-based experiments, in vitro adapted viruses could survive and grow on the same fomites.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , RNA Viral/genética , Fômites , Hospitais
18.
Lett Appl Microbiol ; 76(2)2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36660929

RESUMO

Virus survival on fomites may represent a vehicle for transmission to humans. This study was conducted to optimize and validate a recovery method for the porcine respiratory and reproductive syndrome virus (PRRSV), a potential SARS-CoV-2 surrogate, from stainless steel. Coupons (1.5 × 1.5 cm) inoculated with ca. 7 logs TCID50 of PRRSV were dried for 15 min at room temperature, followed by incubation at 4°C and 35% relative humidity. After 1 h and 24 h, the coupons were processed by four different methods: vortex in DMEM media, vortex in DMEM media with beads, vortex in elution buffer, and shake in elution buffer. The rinsates were processed for titration using the TCID50 method in the MARC-145 cell line. All four methods were equally effective to recover the virus from the soiled SS surfaces (> 79% recovery). The amount of infectious virus recovered after 24 h was similar (P > 0.05) to that recovered after 1 h, indicating that the virus was stable at 4°C for up to 24 h. Using an elution buffer followed by shaking was the least labor-intensive and most economical method. Therefore, this method will be used for future experiments on PRRSV survival and transfer from food-contact surfaces.


Assuntos
COVID-19 , Vírus da Síndrome Respiratória e Reprodutiva Suína , Humanos , Animais , Suínos , SARS-CoV-2 , Aço Inoxidável , Fômites
19.
Infect Control Hosp Epidemiol ; 44(2): 335-337, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-34612187

RESUMO

Respiratory viruses can be transmitted by fomite contact, but no data currently exist on the transfer of enveloped viruses. The transfer efficiency of human coronavirus from various hard surfaces ranged from 0.46% to 49.0%. This information can be used to model the fomite transmission of enveloped viruses.


Assuntos
Coronavirus Humano 229E , Vírus , Humanos , Fômites , Mãos , Pele
20.
Risk Anal ; 43(4): 700-708, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-35491413

RESUMO

The COVID 19 pandemic has triggered concerns and assumptions globally about transmission of the SARS-CoV-2 virus via cash transactions. This paper assesses the risk of contracting COVID-19 through exposure to SARS-CoV-2 via cash acting as a fomite in payment transactions. A quantitative microbial risk assessment was conducted for a scenario assuming an infectious person at the onset of symptoms, when virion concentrations in coughed droplets are at their highest. This person then contaminates a banknote by coughing on it and immediately hands it over to another person, who might then be infected by transferring the virions with a finger from the contaminated banknote to a facial mucous membrane. The scenario considered transfer efficiency of virions on the banknote to fingertips when droplets were still wet and after having dried up and subsequently being touched by finger printing or rubbing the object. Accounting for the likelihood of the scenario to occur by considering (1) a local prevalence of 100 COVID-19 cases/100,000 persons, (2) a maximum of about one-fifth of infected persons transmit high virus loads, and (3) the numbers of cash transactions/person/day, the risk of contracting COVID-19 via person-to-person cash transactions was estimated to be much lower than once per 39,000 days (107 years) for a single person. In the general populace, there will be a maximum of 2.6 expected cases/100,000 persons/day. The risk for a cashier at an average point of sale was estimated to be much less than once per 430 working days (21 months). The depicted scenario is a rare event, therefore, for a single person, the risk of contracting COVID-19 via person-to-person cash transactions is very low. At a point of sale, the risk to the cashier proportionally increases but it is still low.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/epidemiologia , Fômites , Medição de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...